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ABSTRACT  
This paper focusses on one challenge of operating small Unmanned Aerial Vehicle (sUAV) swarms in urban 
environments, namely advanced absolute and relative navigation methods for swarms and swarm members. 
The paper discusses various absolute and relative pose and velocity estimation approaches that extend 
conventional integrated navigation methods to include principles of cognition (i.e., appropriate, and adapted 
actions based on perception and knowledge) and collaboration (i.e., improved ability to reason and interact 
based on information exchange and spatial distribution) between the swarm members. This paper outlines the 
underlying methodology, simulation results, and the platform hardware components. It furthermore analyses 
and discusses the navigation performance using sUAV flight test data collected in an open-sky and simulations 
in an urban environment. 

1.0 MOTIVATION AND BACKGROUND 

Over the last decade, the number of applications that use small Unmanned Aerial Vehicles or sUAVs have 
been increasing and the applications have become more and more complex in terms of operations and 
environments. Using multiple cooperative sUAVs (i.e., a swarm or group) might be beneficial or even 
necessary to perform tasks, such as infrastructure inspection, mapping, law enforcement, traffic monitoring 
either independently or collaboratively [1]. Using multiple dissimilarly equipped sUAVs to perform a task 
may not only significantly reduce the time required to complete a task, but also reduce the ground risk, i.e.  
risk of threats to population and property, due to the reduced complexity and weight, increased reliability, 
and longer endurance of the smaller platforms. Furthermore, swarms of sUAVs may be able to increase 
safety by exploiting the increase and reliability of knowledge through distributed cognition and swarm-wide 
collaboration. 

Since many swarm applications take place at very low altitude levels (VLL) and over urban, often populated, 
areas, it is important to address and limit the air and ground risks associated with their operation [2].  To lower 
the probability of an accident, and, thus, make the operation safer and more acceptable to the public, the 
operation of the swarm members must be carefully planned, limited to pre-defined areas that are free of 
obstacles such as routes or geofenced zones, or achieved by equipping the swarm members with a conflict 
detection and resolution function that ensures that possible conflicts of a swarm member with other members 
or its environment are detected in time and alternative routes can be planned and executed. These strategies 
require reliable estimates of position, velocity, and attitude (PVA) of the swarm and its members both in the 
absolute sense (i.e., with respect to the geographic coordinate frame in which the routes and geofences are 
defined) and in the relative sense (i.e., with respect to other swarm members, other traffic, and objects in the 
environment). 

For many commercial (s)UAVs, Global Navigation Satellite Systems (GNSS) have become the de facto source 
for absolute on-board position and velocity information enabling very accurate position control and navigation 
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along predefined trajectories for an sUAV operating in autonomous or semi-autonomous modes. Examples of 
the use of GNSS as the positioning source for swarm operations include various research flight tests such as 
the evaluation of methods to mimic the behavior of a flock of birds with UAS [3], and the development of 
centralized [4] or ad-hoc communication networks [5][6] to relay information between the various members 
of the swarm. Even the large lightshows that use hundreds of UAVs by companies such as Intel [7] and Ehang 
[8] are heavily choreographed and mainly use GNSS or real-time kinematic or precise point positioning GNSS. 
These systems are typically operated in open areas where GNSS reception is optimal and, can, support the 
navigation performance (i.e., accuracy, integrity, availability, and continuity) required for the safe and conflict-
free operation. Relative GNSS-based navigation methods, such as the one presented in previous work by the 
authors [9] work well for this task, given that all members have a GNSS capability.  Because most errors are 
the same for receivers in proximity, the separation vectors can be easily calculated and remain accurate at the 
decimeter level. However, in the event of an GNSS outage or a compromised or malfunctioning receiver, the 
ability to calculate accurate separation vectors significantly degrades. 

The reliance on GNSS forms a big challenge for operation of cooperative swarms in GNSS-denied or semi-
denied environments such as, urban canyons for bridge or construction inspection, under-the-canopy operation 
during environmental monitoring or inventory tasks, city traffic surveillance, etc.  If a swarm seeks to function 
in such environments, members must be able to perform relative (and absolute) navigation when some or all 
members are GNSS-denied. To enable operation of the swarm the PVA must be robust and not solely 
dependent on GNSS. 

To improve availability and guarantee continuity of service in GNSS-challenged environments, GNSS can be 
integrated with an Inertial Measurement Unit (IMU) [10] or improved by increasing its sensitivity by using 
external data sources (i.e., assisted GPS). An alternative strategy is the integration or fusion of multiple sources 
of data which may not only improve the accuracy of the position and attitude estimate, but also add integrity, 
continuity, and availability to the solution. Alternative navigation technologies may include (a) the integration 
of inertial sensors with imagery and laser scanners [11], (b) beacon-based navigation (i.e., pseudolites, UWB), 
(c) or navigation using signals of opportunity [12]. 

2.0 COOPERATIVE AND COGNITIVE SWARM NAVIGATION  

The basic swarm geometry is shown in Figure 2-1. One navigation-related objective for each swarm member 
(or agent) is the estimation of the absolute pose and velocity of ownship and the other agents in the swarm, 
and the relative poses between the swarm’s agents. These estimates are essential to maintain a safe flight (e.g., 
free of collisions with other members and its environment) and to meet the swarm’s mission goals.  

 
Figure 2-1: Swarm geometry of four sUAS as a function of time. 
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The absolute pose is defined by the orientation of agent ‘i’ with respect to the navigation frame, 𝐑𝐑𝑛𝑛 𝑏𝑏𝑖𝑖⁄  and its 
position in the navigation frame, 𝐫𝐫𝑛𝑛,𝑖𝑖, given by the matrix. 

 𝐓𝐓𝑛𝑛 𝑏𝑏𝑖𝑖⁄ = �𝐑𝐑𝑛𝑛 𝑏𝑏𝑖𝑖⁄ 𝐫𝐫𝑛𝑛,𝑖𝑖
0 1

� (1) 

 
The relative pose is defined by the orientation of agent ‘j’ with respect to the body frame of agent ‘i’, 𝐑𝐑𝑏𝑏𝑖𝑖 𝑏𝑏𝑗𝑗⁄  
and the separation vector expressed in navigation frame, 𝐬𝐬𝑛𝑛,𝑖𝑖𝑖𝑖: 
 

 𝐓𝐓𝑏𝑏𝑖𝑖 𝑏𝑏𝑗𝑗⁄ = �
𝐑𝐑𝑏𝑏𝑖𝑖 𝑏𝑏𝑗𝑗⁄ 𝐫𝐫𝑏𝑏𝑖𝑖,𝑖𝑖
𝟎𝟎 𝟏𝟏

� (2) 

 
where 𝐫𝐫𝑏𝑏𝑖𝑖,𝑖𝑖 = 𝐑𝐑𝑏𝑏𝑖𝑖 𝑛𝑛⁄ 𝐬𝐬𝑛𝑛,𝑖𝑖𝑖𝑖 = 𝐑𝐑𝑏𝑏𝑖𝑖 𝑛𝑛⁄ �𝐫𝐫𝑛𝑛,𝑖𝑖 − 𝐫𝐫𝑛𝑛,𝑖𝑖�. 
  

The relative pose can be used to relate the poses of agents ‘i’ and ‘j’ in the navigation frame, or: 
 
 𝐓𝐓𝑛𝑛 𝑏𝑏𝑗𝑗⁄ = 𝐓𝐓𝑛𝑛 𝑏𝑏𝑖𝑖⁄  𝐓𝐓𝑏𝑏𝑖𝑖 𝑏𝑏𝑗𝑗⁄ ⟹ 𝐓𝐓𝑏𝑏𝑖𝑖 𝑏𝑏𝑗𝑗⁄ = 𝐓𝐓𝑛𝑛 𝑏𝑏𝑖𝑖⁄

−𝟏𝟏 𝐓𝐓𝑛𝑛 𝑏𝑏𝑗𝑗⁄  (3) 
 
It is important to note, that, in terms of exchange of information between the swarm members, the swarm 
should typically not be considered a fully connected network so that the performance (accuracy, integrity, 
availability, and continuity) of the absolute and relative pose estimates 𝐓𝐓�𝑛𝑛 𝑏𝑏𝑖𝑖⁄  and 𝐓𝐓�𝑏𝑏𝑖𝑖 𝑏𝑏𝑗𝑗⁄   will be a function of 
the information locally available and available through the agents (i.e., swarm members) with which it is 
connected (through the connection matrix). So, first, each agent must gather all information from its connected 
neighbors, determine for what navigation-related parameters sufficient information is available (i.e., what 
absolute and relative state variables are observable), perform the estimation of the observable states, and then 
assess the actual performance of these estimates. Since, this process may differ from agent to agent, estimates 
for the same quantity may differ from one sUAV to another, leading to an inconsistent view of the “world”.  
The assessment of this global view is not the focus of this paper, but has been addressed by papers addressing 
the scheduling of tasks within a swarm, such as the work described in [13] and the work in [14] which also 
addresses the communications aspects of the problem. 

In nature, swarms of animals have proven to be capable of solving a variety of different and complex 
navigation tasks using their cognitive and collaborative abilities (e.g., honeybees, ants, birds [15][16]). 
Following the success of these swarms, we identified cognition and collaboration as the central elements of 
a swarm navigation architecture and use existing knowledge from neuroscience, biology, and robotics to 
design methods to achieve the swarm’s mission while meeting the stringent navigation requirements for 
urban operation. Here, cognition is defined as the selection of an appropriate and adapted action based on 
perception and knowledge, and collaboration as the improved ability to reason and interact based on 
information exchange and spatial distribution of a swarm. As an example of how cognition and 
collaboration is helping navigation in nature, [17] describes five mechanisms a swarm of animals may use 
to improve their navigation abilities and accuracy during migratory behavior:  

 
A. Many wrongs: in this case improvement of the navigation performance is achieved by using across 

platform averaging or filtering in the navigation estimation process. This principle is illustrated in Figure 
2-2(a). The figure shows five sUAVs along with their individual position uncertainty ellipses. When 
combining the noisy position and velocity estimates to obtain a global estimate of the swarm’s motion 
using some filter approach, a noise reduction can be expected due to the averaging effect.    
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B. Leadership: in many cases some swarm members have better knowledge of their navigation solution (in 
terms of performance or observability) and use that knowledge to help the remaining members meet their 
navigation performance requirements. An example of this mechanism is illustrated in Figure 2-2(b). Here, 
two high flying sUAVs are equipped with high-accuracy and resilient GNSS/Inertial systems where the 
other three swarm members (3,4, and 5) are not and are operating in an environment where GNSS 
performance is significantly deteriorated resulting in an inability of sUAS 3,4, and 5 to determine its 
absolute position accurately or at all. Now, sUAVs 3,4, and 5 may be able to use the advanced knowledge 
of the leaders to improve their absolute and global position estimate. An example of this mechanism is 
discussed in [18]. 

 

Figure 2-2: (a) many wrongs principle; (b) leadership, (c) Emergent sensing. 
 

C. Emergent sensing: in this mechanism the whole swarm comes up with a set of measurements that can be 
used to build a model of the environment (e.g., situational awareness) and help in the current or future 
navigation efforts. An example scenario that highlights this mechanism is shown in Figure 2-2(c). In this 
example, swarm members with different sensor equipment perform an infrastructure inspection mission 
for the first time and use the different sensor modalities to generate a map of the environment, that then 
can be used for navigation purposes in a manner like simultaneous localization and mapping (SLAM). 
Over time, this model will not only help the swarm perform its infrastructure inspection mission more 
efficiently, but also come up with a mission path that guarantees that the required navigation performance 
criteria are met, and the mission is performed safely. 

D. Social learning:  in this case information existing with the individual swarm members is exchanged so 
the whole group can benefit. This mechanism allows new swarm sUAVs to learn from the members that 
have been used for missions for a while. Furthermore, equally experienced sUAVs can exchange 
information from past missions when their experiences have been different due to, for example, different 
routes/trajectories that they have flown. Information could include (partial) maps of the environment or 
expected navigation performance at certain locations as e.g., under bridges or urban canyons. 

E. Collective learning:  in this mechanism interactions within the group lead to better and more detailed 
knowledge of the environment and, therefore, so better collision avoidance decisions can be made, and 
routes can be identified that support the required navigation performance. An example would be to fly a 
configuration that optimizes map-building while at the same time using that map to maintain a good 
estimate of the relative location of the swarm members (in addition to GNSS). 

As mentioned in the introduction, a swarm of UAVs may significantly reduce the time required to complete 
the application task.  If one distributes the sensors necessary to perform a certain task across the UAS within 
the swarm, it will be possible to use smaller and lighter UAS that operate longer and cost less, thus, offsetting 
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the costs associated with the increase in platforms required. More importantly, it is our thesis that, due to the 
possibility to spatially distribute the swarm members, the swarm sensors combined can observe a larger part 
of the environment when working together, while at the same time use different perspectives to estimate for 
e.g., building features. In nature, this mechanism is referred to as emergent sensing and collective learning and 
may lead to increased navigation accuracy in animal swarms.  The result will be a better model of the 
environment that can be used to assess the collision risk by detecting possible loss-of-separation events of the 
swarm members for the near future. If so, appropriate action can be taken to avoid this collision. Furthermore, 
the navigation capability may also deteriorate for one of the swarm members if its sensors does not provide 
sufficient information to estimate both the absolute and relative PVA state. Collaboration through the exchange 
of information, may alleviate this problem.  

3.0 METHODOLOGY 

3.1 Perception, Comprehension and Projection and Decision Making 
The high-level block diagram of the proposed method for cognitive and collaborative navigation of swarms is 
shown in Figure 3-1. This block diagrams resembles the model of situational awareness in dynamic decision 
systems as introduced by Endsley [19]. Even though Endsley’s work focusses on Human Factors, the concept 
of situational awareness for a human can be easily translated to a situation awareness model for the swarm 
members and the swarm as a whole. The decision-making loop shown in Figure 3-1 also shows a lot of 
similarities with the Observe, Orient, Decide and Act (OODA) loop by Boyd and the perception-action cycle 
[20]. 

 

Figure 3-1: Swarm Architecture – Dynamic Decision System. 

In the decision-making loop, the swarm members improve their awareness of their surroundings both to 
achieve their mission goals and objectives, but also to do so safely by meeting the required (stringent) absolute 
and relative navigation performance requirements imposed by the operational use and mission of the swarm.  
Like in human factors, three levels of situational awareness can be defined. In the perception level (level 1), 
the swarm member assesses what relevant information is available. This information includes local navigation 
sensor information, information in onboard long-term memory (e.g., models of the environments, maps, etc.), 
and sensory information from other agents in the swarm available through the communication network. Note 
that the latter information may not be complete, i.e., include sensory information from all other swarm agents, 
due to the lack of full network connectivity. 
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Within our framework, the Robotic Operating System 2 (ROS2) [21] is used to interface with the local sensors 
and communication links (the interface program is referred to as a ROS2 node). The messages output by these 
nodes are clearly defined and contain the actual raw or processed data of the sensor (whatever is applicable for 
the sensor in question) as well as meta data describing some of the sensor characteristics, settings, and 
limitations. These topics are then used by the perception module. 

In the current framework implementation, all components with the yellow box in Figure 3-1, can also be 
simulated. Although various options are available and have been used such as Gazebo or AirSim, an in-house 
Unity-based simulator has been developed and is continued to be improved to support this simulation feature. 
The assessment results output by the perception module, are then used by the comprehension module to get a 
clear understanding of the current situation, and, finally, to predict what the future situation will look like in 
the projection module. In terms of navigation performance this could refer to the current and future absolute 
and relative navigation state and associated performance, respectively (see Figure 3-2). Based on this 
knowledge and the mission goals and objectives, the swarm members will make decisions regarding their 
planned actions (e.g., motion changes, new trajectories, new swarm configurations to optimize the navigation 
performance or network configuration). Example behaviors that would require absolute and relative navigation 
capability is the earlier discussed flocking behavior that implements, for example, flocking based on Reynold’s 
principles of separation (try to stay well clear of the other swarm members), alignment (steer towards the 
average track of local swarm members), and cohesion (steer towards the average position of the local swarm 
members, try to stay together) [22].  

 

Figure 3-2: Swarm Architecture – Dynamic Decision System – Navigation-specific implementation. 

Table 3-1 shows some of the navigation-related sensors that may be available on the swarm members. Note 
that the swarm may not necessarily have to consist of identical sUAS resulting in a lower cost and weight of 
the platforms. 

Table 3-1: Sensor information: measurement examples. 
 Raw Processed 
GNSS Pseudorange, carrier-phase Position, position change 
Laser range scanners Range, scan angle, point cloud Position change, orientation change 
3D Imagers Range, azimuth, elevation (𝜃𝜃𝑖𝑖), point cloud Position change, orientation change 
Camera (mono) Unit vector pointing to feature/pixel + intensity Scaled position change, orientation change 
Camera (stereo) Pairs of unit vector pointing to feature/pixel  Position change (Δ𝐫𝐫𝑖𝑖), orientation change  
Beacons Range Position  
Range radios  Relative range between ‘i’ and ‘j’ - 
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IMU Acceleration/specific force, angular rate Position, velocity, attitude 
Optical flow - Scaled velocity 
Radio/laser altimeter Height above ground  - 
Baro altimeter Height w.r.t. pressure reference height  - 
Magnetometer Orientation w.r.t. magnetic field  - 

  
An example of this approach is illustrated in the simple two-dimensional (2D) 3-member swarm example 
given in Figure 3-3 and Figure 3-4. Based on the information available in each of the UAVs in Figure 3-3 
(left), only the 2D position of UAV 1 can be calculated as it is completely constraint by the two distance 
measurements to walls ‘4’ and ‘5’ obtained from a laser range scanner. However, both UAV 2 and 3 do not 
have sufficient measurements to estimate their 2D position.  

 𝐫𝐫1 = �𝑑𝑑14 
𝑑𝑑15

� , 𝐫𝐫2 = �𝑑𝑑24 
? � , 𝐫𝐫3 = � ?  

𝑑𝑑35
� (4) 

However, by exchanging information, ℐ, in the form of measurements between the swarm members, enough 
information will be available in each UAV to locally compute not only the UAV’s location but also its 
teammates in a consistent manner. In this example, 𝜌𝜌𝑖𝑖𝑖𝑖  is the range between UAS ‘i’ and ‘j’ from a range radio 
sensor, and 𝑑𝑑𝑖𝑖𝑖𝑖 is the shortest distance between UAS ‘i’ and surface ‘j’ from a laser range scanner. 

 𝐫𝐫1 = �𝑑𝑑14 
𝑑𝑑15

� , 𝐫𝐫2 = �
𝑑𝑑24 

𝑑𝑑15 + �𝜌𝜌122 − (𝑑𝑑24 − 𝑑𝑑14)2�
, 𝐫𝐫3 = �𝑑𝑑24 + �𝜌𝜌232 − �𝑟𝑟2,𝑥𝑥 − 𝑑𝑑35�

2

𝑑𝑑35
� (5) 

 
 Figure 3-3: 2D swarm navigation without information exchange (left), and with information exchange (right) 

 
If, in addition to the information exchange, UAV actions are also employed, then, a movement of UAV 3 
in Figure 3-4 (right) within radio range of the ultra-wideband (UWB) range radio of UAV 1 results in two 
ways to estimate the UAV positions, allowing the user to perform a consistency check and possibly detect 
sensor faults that may exist and lead to hazardous situations. A consensus-based method that uses concepts 
from information theory such as the approach proposed in [23] could be used to obtain the coordination 
actions needed to automate the above concept with our dynamic decision system.  
 
Another consideration in the decision on how to move the swarm members (i.e., how to configure them), is 
the effect of the geometry on the navigation performance (like the Dilution of Precision or DOP in GNSS). 
This may mean that to achieve a required navigation performance imposed by the operational scenario, the 
swarm configuration must be chosen such that the DOP and nominal measurement accuracy support the 
accuracy requirements. In [24] an approach is described to perform this task on a swarm whose members 
have knowledge of the ranges between another.  
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Figure 3-4: 2D swarm navigation without information exchange (left), and with information exchange and 

action reasoning (right).  
 

3.2 Swarm Constraints and Rules 
When selecting the (minimum) set of sensor measurements required to estimate the position of each swarm 
member, it is important to identify the constraints introduced by the available measurements. The 
measurements must be selected such that the defined state vector determined by PVA, can be observed [25] 
and that a minimum navigation performance level (i.e., accuracy, integrity, availability, continuity) can be 
achieved. In the following examples, it is assumed that the whole swarm configuration is computed by each 
swarm member’s processing unit. Note that the choice between central and decentralized swarm architecture 
is not the focus of this paper. 

Figure 3-5 (a), (b) and (c) show 2D examples of a small swarm with 3 sUAVs where the ranges between all 
members are known due to the availability of range radio measurements. Without any further constraints, the 
swarm has 3 degrees of freedom. It could be freely translated and rotated as a rigid body within the 2D 
navigation frame without being inconsistent with any measurement. 
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Figure 3-5: Constraints –(a) and (b) 2D position constraints with known ranges and a single global constraint, (c) 
2D position constraints with known ranges and two global constraints, (d) 3D swarm configuration with range 

and altitude constraints. 

When two of the members (1 and 2) have knowledge of their global position estimate, but member 3 does not, 
the ambiguity is reduced to 1-degree of freedom as shown in Figure 3-5(c). With known ranges 𝜌𝜌12, 𝜌𝜌13, and 
𝜌𝜌23, member 3’s position is ambiguous: it could either be in at position 3 or position 3’ in 2D. In three 
dimensions (3D), the location of sUAV 3 could be on a circle. In 3D the ambiguity could again be reduced to 
two degrees (horizontal translation, rotation around a vertical axis) when the altitude is known from baro-
altimeters, for example, as illustrated in Figure 3-5 (d). 

4.0 MECHANIZATIONS – BAYESIAN ESTIMATORS 

4.1 Overview 
To integrate the information from a swarm member’s onboard sensors and data received from other swarm 
members, various integration approaches may be selected including snapshot methods such as ordinary least 
squares (OLS) and weighted least squares (WLS) estimators, parametric sequential estimators such as Kalman 
Filters (KF), Extended Kalman filters (EKF), or non-parametric estimators such Particle Filters (PF). For 
details on all these estimators many good reference texts are available including [25] and [26].  

The filter mechanizations must be selected based on available sensor information and care must be taken that 
potential transitions from one mechanization to another do not affect the navigation performance adversely 
(e.g., jumps or divergence).  For each of the sensors available within the swarm, a basic measurement model 
must be derived that relates the sensor measurements to the state vector, 𝐱𝐱 (i.e., navigation- or error state) 
through function 𝐡𝐡. 

 𝐳𝐳𝑘𝑘 = 𝐡𝐡(𝐱𝐱𝑘𝑘) + 𝐯𝐯𝑘𝑘 (6) 

Component 𝐯𝐯𝑘𝑘 represents the error introduced by the sensor. In many cases, this error is assumed to be a zero-
mean normally distributed noise with a covariance matrix equal to 𝚺𝚺𝑣𝑣. However, this assumption must always 
be tested before designing the filter mechanization. In the following sections we will shortly describe example 
swarm mechanizations that are used in the results section.  

4.2 Example: Inertial/Range-radio/Baro Integration 
The example discussed in this section shows an example of the leadership and social learning principles 
mentioned in Section 2.0. It is assumed here that all measurement information is shared among the sUAVs. Of 
course, in a real scenario this could be too much of a burden on the data links of the swarm members.  To 
estimate the position of all sUAVs, a centralized complementary extended Kalman filter (CEKF) has been 
used.  Note that this could be implemented decentralized as well with partial information for each swarm 
member, however, in that case the consistency of the situation awareness by all members must be considered 
and assessed.  

The state vector consists of the errors states of all swarm members involved in the position calculation (here: 
6). Error states include 3D position and velocity errors, the tilt error, and the accelerometer and gyro bias 
vectors. Expressions for these as well as their corresponding state transition matrices can be found in reference 
texts such as [10] and [33]. For a swarm with ‘𝑁𝑁’ Inertial Navigation Systems (INS), the state vector would 
be size 15𝑁𝑁. 
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The range between any two sUAVs can be computed using their respective INS position estimates 𝐫𝐫�𝑘𝑘,𝑖𝑖𝑛𝑛𝑖𝑖, and 
expressed in terms of the true relative position and an additional error term that combines the INS errors from 
‘i’ and ‘k’, or: 

 𝜌𝜌𝑖𝑖𝑘𝑘𝑖𝑖𝑛𝑛𝑖𝑖 = �𝐫𝐫�𝑖𝑖,𝑖𝑖𝑛𝑛𝑖𝑖 − 𝐫𝐫�𝑘𝑘,𝑖𝑖𝑛𝑛𝑖𝑖� = �𝐬𝐬𝑖𝑖𝑘𝑘 − 𝛿𝛿𝐫𝐫𝑖𝑖𝑘𝑘,𝑖𝑖𝑛𝑛𝑖𝑖� (7) 

Equation (7) can be linearized with respect to the involved sUAS INS position estimates. 

  𝜌𝜌�𝑖𝑖𝑘𝑘𝑖𝑖𝑛𝑛𝑖𝑖 ≈  𝜌𝜌𝑖𝑖𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 +
𝐬𝐬𝑖𝑖𝑘𝑘𝑇𝑇

𝜌𝜌𝑖𝑖𝑘𝑘
𝛿𝛿𝐫𝐫𝑖𝑖𝑘𝑘,𝑖𝑖𝑛𝑛𝑖𝑖 = 𝜌𝜌𝑖𝑖𝑘𝑘𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐮𝐮𝑖𝑖𝑘𝑘 

𝑇𝑇 𝛿𝛿𝐫𝐫𝑖𝑖𝑘𝑘,𝑖𝑖𝑛𝑛𝑖𝑖�������
𝛿𝛿𝜌𝜌𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

 (8) 

The row elements of the measurement vector, 𝐳𝐳, are given by the various available range differences in the 
swarm: 

 𝑧𝑧𝑖𝑖𝑘𝑘 = 𝜌𝜌�𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜌𝜌�𝑖𝑖𝑘𝑘𝑟𝑟𝑟𝑟 = 𝛿𝛿𝜌𝜌𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑡𝑡𝑡𝑡 (9) 

where 𝛿𝛿𝜌𝜌𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖is the error due to the contributions of two INSs involved, and 𝑣𝑣𝑡𝑡𝑡𝑡is the range noise error of 
the range-radio. Equation (9) can be expressed in the inertial position error terms as follows: 

 𝑧𝑧𝑖𝑖𝑘𝑘 = 𝛿𝛿𝜌𝜌𝑖𝑖𝑘𝑘𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑣𝑣𝑡𝑡𝑡𝑡 ≈ −𝐮𝐮𝑖𝑖𝑘𝑘𝑇𝑇 𝛿𝛿𝐫𝐫𝑖𝑖𝑘𝑘,𝑖𝑖𝑛𝑛𝑖𝑖 + 𝑣𝑣𝑡𝑡𝑡𝑡 (10) 

The baro-altimeter measurement is much simpler, as it is already linear: 

 𝑧𝑧𝑎𝑎𝑎𝑎𝑡𝑡,𝑘𝑘 = ℎ𝑘𝑘,𝑖𝑖𝑛𝑛𝑖𝑖  − ℎ𝑘𝑘,𝑎𝑎𝑎𝑎𝑡𝑡 = 𝛿𝛿𝑟𝑟𝑘𝑘𝑧𝑧,𝑖𝑖𝑛𝑛𝑖𝑖 + 𝑣𝑣𝑏𝑏𝑎𝑎𝑡𝑡𝑏𝑏 (11) 

where 𝛿𝛿𝑟𝑟𝑘𝑘𝑧𝑧,𝑖𝑖𝑛𝑛𝑖𝑖 is the z-component of the position vector computed by the INS of swarm member k’. The 
results of equations (10) and (11) can be used to setup the 𝐇𝐇-matrix. A block diagram that summarizes this 
method is shown in Figure 4-1. 

 

Figure 4-1: Integration of range radio, INS, altimeter, and leader sUAS GNSS positions. 

For the sUAVs that have valid and reliable GNSS available, the measurement vector z will be augmented with 
the difference between its INS and GNSS position and velocity. 

5.0 MECHANIZATIONS – FACTOR GRAPH-BASED ESTIMATORS 

Alternatively to sequential estimation, one can also utilize a batch of data (across sensors and across time) and 
obtain a maximum likelihood estimate using non-linear least squares solver tools such as g2o [27], Ceres [28], 
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SymForce [29] and the various tools available in Matlab. These non-linear least squares solvers (NLS-Solver) 
have been used extensively in Simultaneous Localization and Mapping (SLAM) methods such as GraphSLAM 
[30].  

Factors are based on the measurement equation for each of the available measurements (see Equation (4)), 
where  𝐡𝐡 is a linear or non-linear function. The probabilistic representation of the measurement equation is 
the likelihood function; the probability density of a certain measurement vector given a certain state vector. 
Assuming zero-mean normally distributed noise with a covariance matrix equal to 𝚺𝚺𝑣𝑣, this likelihood 
function looks like: 

   
𝑝𝑝(𝐳𝐳𝑘𝑘|𝐱𝐱𝑘𝑘) = 𝜂𝜂 𝑒𝑒𝑒𝑒𝑝𝑝{[𝐳𝐳𝑘𝑘 − 𝐡𝐡(𝐱𝐱𝑘𝑘)]𝑇𝑇𝚺𝚺𝒗𝒗−1[𝐳𝐳𝑘𝑘 − 𝐡𝐡(𝐱𝐱𝑘𝑘)]}  (12) 

where 𝜂𝜂 is the probability density function’s normalizing constant and 𝐳𝐳𝑘𝑘 − 𝐡𝐡(𝐱𝐱𝑘𝑘) is referred to as the 
residual vector. 

In a maximum likelihood estimator, the likelihood function can also be replaced by the log-likelihood 
function, as the maximum will be for identical 𝐱𝐱: 

log{𝑝𝑝(𝐳𝐳|𝐱𝐱)} = log(𝜂𝜂) + [𝐳𝐳 − 𝐡𝐡(𝐱𝐱)]𝑇𝑇𝚺𝚺𝒗𝒗−1[𝐳𝐳 − 𝐡𝐡(𝐱𝐱)] 
log{𝑝𝑝(𝐳𝐳|𝐱𝐱)} ∝  [𝐳𝐳 − 𝐡𝐡(𝐱𝐱)]𝑇𝑇𝚺𝚺𝒗𝒗−1[𝐳𝐳 − 𝐡𝐡(𝐱𝐱)] (13) 

For measurement set 𝒮𝒮 = {𝐳𝐳𝑎𝑎|𝑙𝑙 = 1, … ,𝑁𝑁} of independent measurements, one can obtain an estimate for 
state vector 𝐱𝐱 by minimizing the log likelihood sum of all observations: 
 

𝐱𝐱� = arg min
𝐱𝐱
𝐅𝐅(𝐱𝐱)  (14) 

where 𝐅𝐅(𝐱𝐱) is the sum of the factors associated with the available measurements 𝒮𝒮: 
 

𝐅𝐅(𝐱𝐱) = �[𝐳𝐳l − 𝐡𝐡𝑎𝑎(𝐱𝐱)]𝑇𝑇𝚺𝚺𝒗𝒗𝑙𝑙
−1[𝐳𝐳𝑎𝑎 − 𝐡𝐡𝑎𝑎(𝐱𝐱)]

𝑧𝑧𝑙𝑙∈𝒮𝒮

 (15) 

 
Additionally, motion models can also be considered by adding factors that relate the state at various time 

epochs: 
 

𝐅𝐅(𝐱𝐱) = �[𝐱𝐱𝑘𝑘 − 𝐠𝐠(𝐱𝐱𝑘𝑘−1)]𝑇𝑇𝐐𝐐−1[𝐱𝐱𝑘𝑘 − 𝐠𝐠(𝐱𝐱𝑘𝑘−1)]
∀𝑘𝑘

 (16) 

  
In a simple case, this optimization method could be replaced by a carefully formulated OLS, WLS or 

EKF as well. However, in general, one can obtain a maximum likelihood estimate using non-linear least 
squares solver tools such as g2o [21], Ceres [22], SymForce [23] and the various tools available in Matlab 
or Python. In our case, the factors have been described in Python using SymForce and the symbolically 
prepared for the optimization process. 

  
Some relevant measurements for our test and simulation setup are shown in Figure 5-1. For each of these 

measurements a factor can be described and related to the absolute and relative poses defined in Section 2.0. 
Each of these measurements can be seen as a constraint with uncertainty. For example, the range radio 
measurements form a constraint between two swarm members, the GNSS pseudorange measurements a 
constraint between an agent and a satellite, etc.  
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Figure 5-1: Example measurements by a small swarm of sUAVs in a relevant environment. 

Note that the residuals are weighted by the inverse of the standard deviation to obtain residuals that are unit-
variance.  

Table 5-1: Subset of example factors. 
Name Factor  

Range radio 𝐹𝐹𝑡𝑡𝑡𝑡,𝑖𝑖𝑖𝑖 = �𝜌𝜌𝑖𝑖𝑖𝑖 − �𝐬𝐬𝑖𝑖𝑖𝑖�� 𝜎𝜎𝑡𝑡ℎ𝑏𝑏,𝑖𝑖�  (17) 

Ranging beacons 𝐹𝐹𝑖𝑖,𝑚𝑚𝑙𝑙 = �𝜌𝜌𝑖𝑖,𝑚𝑚𝑙𝑙 − �𝐫𝐫𝑚𝑚𝑙𝑙 − 𝐫𝐫𝑛𝑛,𝑖𝑖�� 𝜎𝜎𝑚𝑚,𝑖𝑖�   (18) 

Marker beacons (direction) 𝐹𝐹𝑖𝑖,𝑚𝑚𝑙𝑙 = �𝐞𝐞�𝑖𝑖,𝑚𝑚𝑙𝑙 − �𝐫𝐫𝑚𝑚𝑙𝑙 − 𝐫𝐫𝑛𝑛,𝑖𝑖��𝐫𝐫𝑚𝑚𝑙𝑙 − 𝐫𝐫𝑛𝑛,𝑖𝑖��𝚺𝚺−1/2  (19) 

Laser altimeter 𝐹𝐹𝑎𝑎𝑎𝑎𝑡𝑡,𝑖𝑖 = �𝑧𝑧 − ℎ𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖� 𝜎𝜎𝑎𝑎𝑎𝑎𝑡𝑡⁄   (20) 

GNSS pseudoranges 𝐹𝐹𝑖𝑖,𝑎𝑎𝑙𝑙 = �𝑝𝑝𝑟𝑟𝑖𝑖,𝑎𝑎𝑙𝑙 − �𝐫𝐫𝑎𝑎𝑙𝑙 − 𝐫𝐫𝑛𝑛,𝑖𝑖� − 𝛿𝛿𝑡𝑡𝑐𝑐𝑎𝑎𝑘𝑘� 𝜎𝜎𝑝𝑝𝑡𝑡,𝑎𝑎𝑙𝑙�   (21) 

Agent position report 𝐹𝐹𝑖𝑖,𝑝𝑝𝑗𝑗 = �𝐫𝐫�𝑛𝑛,𝑖𝑖 − 𝐫𝐫𝑛𝑛,𝑖𝑖�𝚺𝚺𝑝𝑝𝒋𝒋
−1/2  (22) 

Agent position change report 𝐹𝐹𝑖𝑖,𝑝𝑝𝑗𝑗 = �Δ𝐫𝐫�𝑛𝑛,𝑖𝑖 − Δ𝐫𝐫𝑛𝑛,𝑖𝑖�𝚺𝚺𝑑𝑑𝑝𝑝𝒋𝒋
−1/2  (23) 

 
IMU measurements are integrated using the pre-integrated IMU actor as described in detail in [34][35]. 
Additionally, factors for single and sequential differences can be included but their treatise is outside the 
scope of this paper. In addition, position and change in position reports can be considered for when the 
absolute position of other swarm agents is also part of the parameters to be estimated. Like mentioned earlier, 
it is important to perform an observability analysis to check if agent ‘i’ has sufficient information to also 
estimate agent ‘j’s position.  
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6.0 EVALUATION TOOLS 

6.1 Flight Test Evaluation – Ohio University Open-Sky Test Setup 
To evaluate the swarm’s absolute and relative positioning capability using the method explained in Section 
3.3, data from real sUAV platforms was used (see Figure 6-1 on the left). The platforms were equipped with 
an Odroid XU4 processor (running Ubuntu and the Robotics Operating System) to perform the data collection, 
with multiple inertial units of varying costs and qualities and different GNSS receivers: Platform A with a 
Sensonor STIM300 and a Novatel OEM-615; Platform B with a VectorNav VN-100 and Xsens Mti-1 inertial 
and a Novatel OEM-615 GNSS receiver, and Platform C with an Xsens Mti-1 and a U-blox M8T. In addition, 
the platforms were equipped with a point-to-multipoint data radio for platform-to-platform and platform-to-
ground station communication. The latter was just present for monitoring purposes. 

 

Figure 6-1: Formation flight at test field at Ohio University and overlaid flight trajectories. 

During two flights, sensor data was collected, and time tagged.  The two flight-data set times were adjusted 
and then overlaid in post-processing to generate a single data set equivalent to a six-member flight.  The 6 
overlaid flight trajectories are shown in (see Figure 6-1 on the right) on the right side. Range radio 
measurements were simulated from the GNSS position solutions and noise was added based on the ranging 
performance of the range radios developed by Ohio University and presented earlier in [31].  

6.2  Hybrid Simulation Setup 
To evaluate the various swarm navigation in a more flexible environment, a simulation environment has been 
used. This simulation includes 3D models of the urban environment based on CityGML LOD2 files for Berlin.  
In past work, this model has been used to perform extensive urban Dilution of Precision analyses for urban 
GNSS performance assessments.  

This simulation environment allows for use of actual flight test data and simulated data (i.e., a hybrid 
simulation). For the example provided here, the 6-sUAV trajectories from the flight test described in Section 
6.1, were geographically moved from their benign environment in Ohio to the urban environment in Berlin. 
The advantage of this hybrid approach is that it allows for partial reuse of the actual sensor data with their 
actual errors. For example, in shown case the real inertial data (accelerometers and gyro outputs), baro-altitudes 
and GPS data was “translated” to Berlin. For the GPS data, this means expressing all reference data (i.e., 
satellite positions) in a local frame.  Of course, this means that the GPS satellite constellation does no longer 
represent the actual one. An example of what these simulation trajectories look like is shown in Figure 6-2. 
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Figure 6-2: Snapshots of simulation of a swarm of 6 UAS in courtyard behind the Institute of Aeronautics and 
Astronautics (ILR) using GPS, range-radios, altimeters and simulated UWB beacons. 

To illustrate some of the concepts, discussed in the previous sections, two cases have been implemented 
in the simulator and evaluated. Case I and II simulate a swarm of 6 and 8 sUAS, respectively. Both the Case 
I and II swarms operate in an urban environment at low altitudes and the absolute position is estimated 
through fixed, position referenced beacons and GNSS, respectively. Rather than being dependent on 
reference beacons, both cases can also be implemented using visual features whose locations are known a 
priori from urban databases following a method derived from the tight optical integration method described 
in [32]. Results of that integration are presented in Section 7.  The equipment list for all swarm members is 
provided in Table 6-1. In Case I, a network of local beacons is installed and two of the six sUAS (i.e., 
leaders) are equipped with receivers that are capable of making range measurements, 𝜌𝜌𝑖𝑖,𝑏𝑏𝑖𝑖, to these beacons 
{𝑏𝑏𝑘𝑘|𝑘𝑘 = 1, … ,𝑀𝑀}. Instead, in Case II two high flying sUAS are equipped with high-end GNSS/INS 
platforms and range-radios. Regarding communications, the swarm is fully connected. 

 
Table 6-1: sUAS equipment list 

Case Equipment 1 2 3 4 5 6 7 8 
I IMU √ √ √ √ √ √ n/a n/a 
 Baro √ √ √ √ √ √ n/a n/a 
 Beacon √ - - √ - - n/a n/a 
 Range-radio √ √ √ √ √ √ n/a n/a 
 GNSS - - - - - - n/a n/a 
          

II IMU √ √ √ √ √ √ √ √ 
 Baro √ √ √ √ √ √ √ √ 
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 Beacon - - - - - - - - 
 Range-radio √ √ √ √ √ √ √ √ 
 GNSS - - - - - - √ √ 

 
In terms of filters, the swarm of fleet has multiple variants available. For the sUAV equipped with the 

beacon system, these filters include (i) a standard OLS that uses the range measurements to the beacons and 
baro-altitudes (see Figure 7), (ii) and a loosely coupled linear Complementary Kalman Filter (CKF) that 
integrates the INS position output with the position output of the beacon/baro OLS solution (see Figure 8). 
In addition, the filter sets also included a tightly integrated beacons/baro/inertial mechanization, but they 
are not included in the Case I result section. 

 

 

  
Figure 6-3: Beacon/baro ordinary least squares solution (top), Loosely coupled linear Complementary Kalman 

Filter (CKF) (bottom).  

The other Case I sUAS must rely on their INS, baro, range-radio and information received from the beacon-
system equipped leaders to obtain an estimate of their position. Note that, in this case, the sUAS rely on the 
installed beacons and the knowledge of their positions in a global frame. Exchange of knowledge of the relative 
location of the beacons by some of the swarm members and exchange of this information among all members, 
makes this an example of principle C. Since the overall position of the individual members becomes smaller, 
Case I is also an example of Section 2.0 mechanism A. For their position solution, they depend on a non-linear 
least squares solver like the ones mentioned in Section 5.2. 

6.3 Flight Test Setup – Berlin “Urban” Test Setup 
To enable the evaluation of the various operational swarm concepts, sUAV platforms and associated payloads 
were developed. The basic sUAV platform was the Holybro S500. The sensor payload onboard the sUAV 
consists of common navigation-related hardware including a custom printed circuit board (PCB), i.e., the 
SwarmEx board, with a GNSS receiver, an IMU and a range radio. The common hardware, furthermore, 
includes a TF03 laser altimeter, onboard processors (RaspberryPi 4, NVIDIA nano or TX2, Odroid XU4), 
communication systems/data links (WiFi, LTE, Xbee or SRD890), and surveillance equipment like ADS-B 
and FLARM (Aerobits TR-1/F). 
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Figure 6-4: S500 Quadcopter Swarm UAVs. 

The processor is connected to a PixHawk PX4 flight controller to allow for manual, semi-autonomous and 
autonomous operation with external position and velocity capability and the option of the processor to send 
it commands.  

 
Figure 6-5: Swarm flight test facility in Schönwalde. 

7.0 RESULTS 

7.1 Flight Test Results 
The results for the inertial-only and inertial-range-radio integration mechanizations discussed in Section 5.1 
for the flight test data of Section 6.1 are shown here. The position estimate results are shown in Figure 7-1. 
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Figure 7-1: (left) positioning estimates based on inertial only; (right) inertial/range radio integration. 

Whereas the scenario in which each sUAS determines its position based on its own inertial and baro-
measurements shows positions estimates that drift apart over time, the filter results show that the position 
estimate still drifts but that now the swarm drifts due to a significant performance improvement relative 
navigation performance. This is even more evident from the error plots shown in Figure 7-2 where the relative 
navigation error plots are shown using log(y) axes to better capture both the inertial-only and the filtered 
results. In case one or more members are equipped with GNSS equipment and in an area where GNSS would 
provide fault free performance (as established by integrity-monitoring functions) or, in case of interference or 
denial-of-service, have resilient GNSS receivers, their knowledge of the global position can be used by the 
swarm. 

 

Figure 7-2: Absolute and relative positioning errors with and without filtering. 

Figure 7-3 and 7-4 shows the trajectories and error plots for a varying number of leader sUAVs. The effect on 
the estimated trajectories when one, two or three of the six swarm members can determine their “global” 
position, can clearly be observed. 
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Figure 7-3: Filter results (trajectories) when one or more leaders have knowledge of the global (absolute) 
position due to their advanced equipment or advantageous location. 

 

Figure 7-4: Filter results (errors) when one or more leaders have knowledge of the global (absolute) position due 
to their advanced equipment or advantageous location. 

With a single GNSS-aided member in the swarm (sUAV 2), every member’s solution becomes more accurate, 
both in an absolute and relative sense.  The swarm is globally tied down by the GNSS-aided member and will 
rotate around it as the members’ INSs drift while keeping relative positions intact. When the filter settles after 
about 30 seconds, the solution with two GNSS-aided members (sUAV 2 and 6) becomes even more accurate 
than with one GNSS-enabled member – the absolute error drops to near-zero from a ±20m fluctuation in the 
one-GNSS-enabled configuration.  At this point, all three dimensions are tied down – x and y from the two 
GNSS-aided members, and z from the baro-altimeter. 

With three points of constraint, the solution should improve, but diminishing returns are expected as the 
solution becomes is over-constrained. 

7.2 Simulation Results  
Next, both sequential and factor-graph based methods were evaluated using the simulation described in Section 
6.2.  Figure 7-5 shows the results for Case I and the left side depicts one of the output screens of the simulation 
environment. This figure is a snapshot as, typically, this figure will show an animation of the trajectories 
followed by the swarm. The figure also shows the filter performance on the right side for sUAV 1, 3 and 4, 
where sUAVs 1 and 4 are the leaders equipped with beacon system receivers. The beacon system 
measurements were given a noise error of 0.7m 1-𝜎𝜎. One would expect some multipath errors as well, but 
these were not modelled in this simulation. As can be seen in Figure 7-5, both the OLS (UAS #4) and the 
integrated beacon/inertial, show good results with an expected noise reduction in the latter.  
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The factor-based solution (NLS solver) plot for sUAV #3 shows good results as well. The large uncertainty at 
the beginning can be explained by a bad geometry formed by the two leaders and sUAV #3. With some of the 
others that is not the case.  It would therefore have to be part of the comprehension and projection module to 
predict that this will occur, and define appropriate actions (trajectory changes) to avoid such a bad geometry. 
To evaluate that, the simulation tool will have to be adjusted as the trajectories can no longer be based on 
playback data. 

 
Figure 7-5: Simulation Case I: Swarm of 6 sUAS performing a collaborative mission in an urban environment 

using a locally installed beacon system. 
 

The results for the Case II scenario are shown in Figure 7-6. As expected, the OLS results are noisier due to 
the noise contributions of the leaders’ position estimates. This is less visible in the KF results. Again, the 
NLS-Solver results of sUAV #3 are quite similar including the larger error during the time that sUAV #3 
forms a bad geometry with sUAV #1 and #4.  The NLS-Solver results are still noisy, and it is expected that 
the inclusion of IMU measurements as well as optimizing using a time-window of data (like in GraphSLAM) 
will smooth the results. Alternatively, a EKF implementation may smooth the trajectories. Of course, no 
accuracy (and other navigation performance) targets were defined for this paper, so it is hard to say if the 
results meet the target levels of safety. 

7.0 SUMMARY AND CONCLUSIONS 

This paper introduced the initial foundations of a cognition and collaboration approach to absolute and 
relative navigation of swarms of sUAV based, in part, one some basic principles of swarm navigation in 
nature. Results from a flight test and a simulation demonstrated that the leadership and social learning 
principles do apply nicely and that by evaluating the necessary constraints filters can be defined that allow 
some of the swarm members to operate in GNSS-challenging environments. 
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Figure 7-6: Simulation Case II: Swarm of 8 sUAS performing a collaborative mission in an urban environment 

using two leaders with high-performance navigation equipment at higher altitudes. 
 

So far, the methods have mainly addressed the accuracy performance of the navigation solution. The next steps 
will address the inclusion of other navigation performance parameters (i.e., integrity, continuity, and 
availability). Once those have been established, the situational awareness module can be completely 
implemented by including methods to predict what actions (i.e., short- and mid-term trajectory changes) of the 
swarm and its members will lead to a continued safe operation.  To evaluate these new methods the simulation 
tool must be updated and improved flight test in a relevant operation prepared. 

Finally, the proposed method must be aligned with the large volume of communication literature to minimize 
the utilized communication bandwidth, while maintaining safe operation. 
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